Unconfined Concrete Stress-Strain Behavior

Instructional Materials Complementing FEMA P-751, Design Examples

Reinforced Concrete - 4

Confined Concrete Stress-Strain Behavior

Reinforcing Steel Stress-Strain Behavior

Mid-Point Displacement, Δ

Typical Moment Curvature Diagram

FEMA ~ Instructional Materia

Influence of Reinforcement Ratio

Influence of Compression Reinforcement

Moment-Curvature with Confined Concrete

Plastic Hinging

Strategies to Improve Ductility

- Use low flexural reinforcement ratio
- Add compression reinforcement
- Add confining reinforcement

Other Functions of Confining Steel

- Acts as shear reinforcement
- Prevents buckling of longitudinal reinforcement
- Prevents bond splitting failures

Structural Behavior Frames

Story Mechanism

Sway Mechanism

Story Mechanism

Structural Behavior - Walls

Instructional Materials Complementing FEMA P-751, Design Examples

Reinforced Concrete - 23

Structural Behavior - Columns

Hysteretic Behavior of Joint with Hoops

Instructional Materials Complementing FEMA P-751, Design Examples

Reinforced Concrete - 32

Hysteretic Behavior of Joint without Hoops

Joint Failure – No Shear Reinforcing

Summary of Concrete Behavior

Compressive Ductility

- Strong in compression but brittle
- Confinement improves ductility by
 - Maintaining concrete core integrity
 - Preventing longitudinal bar buckling

Flexural Ductility

- Longitudinal steel provides monotonic ductility at low reinforcement ratios
- Transverse steel needed to maintain ductility through reverse cycles and at very high strains (hinge development)

Summary of Concrete Behavior

Damping

- Well cracked: moderately high damping

- Uncracked (e.g. prestressed): low damping

Potential Problems

- Shear failures are brittle and abrupt and must be avoided
- Degrading strength/stiffness with repeat cycles
 - Limit degradation through adequate hinge development

